You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

44 KiB

페키지 로드

In [1]:
%reload_ext watermark
%watermark -v -p numpy,matplotlib,pandas,sklearn,tqdm,tensorflow,rpy2,watermark,feature_engine
CPython 3.6.9
IPython 7.16.2

numpy 1.19.5
matplotlib 3.3.4
pandas 1.1.5
sklearn 0.24.2
tqdm 4.62.3
tensorflow 2.6.2
rpy2 3.4.5
watermark 2.0.2
feature_engine 1.2.0
In [2]:
from rpy2.robjects import pandas2ri
from rpy2.robjects import r
from rpy2.robjects.packages import importr
pandas2ri.activate()

utils = importr('utils')
package_names = ('ranger')
utils.chooseCRANmirror(ind=1)
#utils.install_packages("ranger") # ranger 패키지 설치
Out[2]:
<rpy2.rinterface_lib.sexp.NULLType object at 0x7f27c9638308> [RTYPES.NILSXP]
In [3]:
import numpy as np
import pandas as pd
import os, re, cv2
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
from feature_engine import transformation as vt
from sklearn.model_selection import train_test_split
import tensorflow as tf
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" 
os.environ["CUDA_VISIBLE_DEVICES"]="0"
main_dir="/root/data/dacon/open"

함수 생성

In [4]:
# 색 강조
def img_Contrast(img,clipLimit=3.0,tileGridSize=(8,8)):
    lab=cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
    l,a,b=cv2.split(lab)
    clahe=cv2.createCLAHE(clipLimit=clipLimit,
                          tileGridSize=tileGridSize)
    cl=clahe.apply(l)
    limg=cv2.merge((cl,a,b))
    final = cv2.cvtColor(limg,cv2.COLOR_LAB2BGR)
    return final

# 특정범위 색 추출
def img_extract(return_img,img,lower=(0,0,0), upper=(110,255,200)):
    img_hsv=cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    img_mask=cv2.inRange(img_hsv, lower, upper)
    img_result= cv2.bitwise_and(return_img, return_img, mask=img_mask)
    img_hsv=cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
    return img_result

# 파일 목록
def file_list(directory):
    def find_files(directory):
        return([f"{directory}/{i}" \
                for i in os.listdir(directory) if re.compile('png$|jpg$').findall(i)])
    out=list()
    if type(directory)==str:
        out=find_files(directory)
    elif type(directory)==list:
        for folder in range(len(directory)):
            [out.append(file) for file in find_files(directory[folder])]
    return(
        sorted(out))

# 이미지 통계량 추출
def rgb_stat(img):
    r_m,g_m,b_m   =np.mean(img,axis=(0,1))
    r_sd,g_sd,b_sd= np.std(img,axis=(0,1))
    return r_m,g_m,b_m,r_sd,g_sd,b_sd

# 무게 산출
def img_to_weight(img,n=15000):
    return (cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)!=0).sum()/n

# 파일 목록
def file_list(directory):
    def find_files(directory):
        return([f"{directory}/{i}" \
                for i in os.listdir(directory) if re.compile('png$|jpg$').findall(i)])
    out=list()
    if type(directory)==str:
        out=find_files(directory)
    elif type(directory)==list:
        for folder in range(len(directory)):
            [out.append(file) for file in find_files(directory[folder])]
    return(
        sorted(out))
# 이미지 변수 생성
def img_feature(dirs):
    df=pd.DataFrame({'img_dirs':dirs})
    for i in tqdm(range(len(dirs))):
        img=cv2.imread(dirs[i])
        raw_img=cv2.resize(img,dsize=(int(img.shape[0]/4),int(img.shape[1]/4)),interpolation=cv2.INTER_CUBIC)
        contrast_img=img_Contrast(img, 3, tileGridSize=(4,3))

        # 시든 잎 추출
        extract_img=img_extract(img,contrast_img, lower=(10,0,0), upper=(30,255,255))
        df.loc[i,'del_leaf']=img_to_weight(extract_img,16900)

        # 청경채 추출
        extract_img=img_extract(img,contrast_img,upper=(90,255,130))# 원본에서 추출
        df.loc[i,'pred_leaf1']=img_to_weight(extract_img,16900)
        contrast_img=img_Contrast(img, 3, tileGridSize=(5,5))
        extract_img=img_extract(img,contrast_img,upper=(77,255,130))# 원본에서 추출
        df.loc[i,'pred_leaf2']=img_to_weight(extract_img,16900)
        df.loc[i,'pred_leaf_mean']=(df.loc[i,'pred_leaf1']+df.loc[i,'pred_leaf2'])/2

        #RGB 추출
        df.loc[i,["r_m","g_m","b_m","r_sd","g_sd","b_sd"]]=rgb_stat(extract_img)
    return df

자료생성

In [5]:
tr_directory=[f"{main_dir}/train/CASE{i:02d}/image" for i in range(1,76)]
tr_img_dirs=file_list(tr_directory)
tr_img_dirs.remove(f'{main_dir}/train/CASE45/image/CASE45_17.png')
te_img_dirs=file_list(f"{main_dir}/test/image")
label_dfs=list()
for file in tqdm([f"{main_dir}/train/CASE{i:02d}/label.csv" for i in range(1,76)]):
    temp_df=pd.read_csv(file)
    for i, img_file in enumerate(temp_df.img_name):
        time_df=pd.read_csv(
            f"{main_dir}/train/CASE{img_file[4:6]}/meta/{img_file.replace('jpg','png').replace('png','csv')}")
        time_df=time_df.sort_values('시간')
        time=time_df.loc[0,'시간']
        temp_df.loc[i,'date']=pd.to_datetime(time).date()
    label_dfs.append(temp_df)
label_df=pd.concat(label_dfs)

label_df['case']=[i[:6] for i in label_df['img_name']]
merge_df=label_df.copy()
merge_df.columns=['img_name','now_weight','date','case']
merge_df=merge_df.drop("img_name",axis=1)
merge_df['date']=merge_df.date+pd.to_timedelta(1,unit='day')
label_df=pd.merge(label_df,merge_df,how='left',on=['case','date'])
del merge_df
  0%|          | 0/75 [00:00<?, ?it/s]
In [6]:
if not('tr_df.csv' in os.listdir("/root/jupyter/데이콘/청경채/input/")):
    tr_df=img_feature(tr_img_dirs)
    te_df=img_feature(te_img_dirs)
    tr_df.to_csv('/root/jupyter/데이콘/청경채/input/tr_df.csv',index=False)
    te_df.to_csv('/root/jupyter/데이콘/청경채/input/te_df.csv',index=False)
else:
    tr_df=pd.read_csv('/root/jupyter/데이콘/청경채/input/tr_df.csv')
    te_df=pd.read_csv('/root/jupyter/데이콘/청경채/input/te_df.csv')
#라벨
for i in tqdm(range(tr_df.shape[0])):
    tr_df.loc[i,['leaf_weight','date','now_weight']]=label_df.loc[
        label_df.img_name==tr_df.img_dirs[i].split('/')[-1],['leaf_weight','date','now_weight']].values[0]
  0%|          | 0/1591 [00:00<?, ?it/s]

삭제할 자료

CASE 2_10, 2_11, 34_01, 40_01, 40_02, 44_01, 52_01, 56_01, 60_20~34, 63_01, 64_01 : 환경자료 결측

CASE 8, 9, 22, 23, 26, 30, 31, 49, 59, 71, 72, 73 : 환경자료 결측

CASE 35_01, 41_01, 44_02, 45_01, 52_02, 53_01, 56_02, 57_01, 63_02 : 부분결측(제거)

CASE 34, 35, 48 : EC 결측

CASE 32_15, 51_11 : Co2 이상

In [7]:
env_na_p=[f"CASE{i}" for i in set([f"60_{i}" for i in range(20,34+1)]).union(
    set(['02_10','02_11','34_01','40_01','40_02','44_01','52_01','56_01','63_01','64_01']))]
env_na_a=[f"CASE{i}" for i in ['08','09','22','23','26','30','31','49','59','71','72','73']]
partial_na=[f"CASE{i}" for i in ["35_01","41_01","44_02","45_01","52_02","53_01","57_01","63_02"]]
ec_na=[f"CASE{i}" for i in ["34","35","48"]]

tr_df['na_label']=False
for i in (env_na_p+env_na_a+partial_na+ec_na):
    tr_df.loc[tr_df['img_dirs'].str.contains(i),"na_label"]=True
In [8]:
for i, filename in tqdm(enumerate(tr_df.img_dirs)):
    temp_df=pd.read_csv(filename.replace('image','meta').replace('jpg','png').replace('png','csv'))
    time_df=time_df.sort_values('시간')
    temp_df.시간=pd.to_datetime(temp_df.시간)
    temp_df['청색광추정광량']=(temp_df['총추정광량']-
                        temp_df['백색광추정광량']+temp_df['적색광추정광량'])[temp_df['청색광추정광량'].isna()]

    aftn_co2=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(9,19))),'CO2관측치'].quantile(.5)
    night_co2=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(19,23))+list(range(0,5))),'CO2관측치'].quantile(.5)
    co2_ratio=aftn_co2/night_co2 # 1보다 낮으면 생육단계, 1보다 크면 발아단계
    zero_ec_cnt=sum(temp_df['EC관측치']==0)
    disease_signal=co2_ratio*zero_ec_cnt

    aftn_ec=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(10,15))),'EC관측치'].quantile(.5)
    night_ec1=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(22,23))),'EC관측치'].quantile(.5)
    night_ec2=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(3,5))),'EC관측치'].quantile(.5)
    m_temp=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(10,18))),'내부온도관측치'].mean(skipna=True)
    m_humidity=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(10,15))),'내부습도관측치'].mean(skipna=True)    
    # 결측자료 처리
    if np.isnan(aftn_ec):
        if tr_df['del_leaf'][i]>10:
            aftn_ec=night_ec1*1.5
        else:
            aftn_ec=night_ec2
    if np.isnan(m_temp):
        m_temp=temp_df['내부온도관측치'].mean(skipna=True)
    if np.isnan(m_humidity):
        m_humidity=temp_df['내부습도관측치'].mean(skipna=True)

    if np.isnan(night_ec1):
        night_ec1=0
    if np.isnan(co2_ratio):
        if tr_df.pred_leaf_mean[i]>50:
            co2_ratio = 0.5
        else:
            co2_ratio = 1.5
    disease_signal=co2_ratio*zero_ec_cnt
    tr_df.loc[i,['co2_ratio','zero_ec_cnt','disease_signal',
                 'aftn_ec','night_ec1','night_ec2','m_temp','m_humidity']]=\
        co2_ratio, zero_ec_cnt, disease_signal, aftn_ec, night_ec1, night_ec2, m_temp, m_humidity
0it [00:00, ?it/s]
In [9]:
for i, filename in tqdm(enumerate(te_df.img_dirs)):
    temp_df=pd.read_csv(filename.replace('image','meta').replace('jpg','png').replace('png','csv'))
    time_df=time_df.sort_values('시간')
    temp_df.시간=pd.to_datetime(temp_df.시간)
    temp_df['청색광추정광량']=(temp_df['총추정광량']-
                        temp_df['백색광추정광량']+temp_df['적색광추정광량'])[temp_df['청색광추정광량'].isna()]

    aftn_co2=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(9,19))),'CO2관측치'].quantile(.5)
    night_co2=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(19,23))+list(range(0,5))),'CO2관측치'].quantile(.5)
    co2_ratio=aftn_co2/night_co2 # 1보다 낮으면 생육단계, 1보다 크면 발아단계
    zero_ec_cnt=sum(temp_df['EC관측치']==0)


    aftn_ec=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(10,15))),'EC관측치'].quantile(.5)
    night_ec1=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(22,23))),'EC관측치'].quantile(.5)
    night_ec2=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(3,5))),'EC관측치'].quantile(.5)
    m_temp=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(10,18))),'내부온도관측치'].mean(skipna=True)
    m_humidity=temp_df.loc[temp_df.시간.dt.hour.isin(list(range(10,15))),'내부습도관측치'].mean(skipna=True)
    # 결측자료 처리
    if np.isnan(aftn_ec):
        if te_df['del_leaf'][i]>10:
            aftn_ec=night_ec1*1.5
        else:
            aftn_ec=night_ec2
    if np.isnan(m_temp):
        m_temp=temp_df['내부온도관측치'].mean(skipna=True)
    if np.isnan(m_humidity):
        m_humidity=temp_df['내부습도관측치'].mean(skipna=True)

    if np.isnan(night_ec1):
        night_ec1=0
    if np.isnan(co2_ratio):
        if te_df.pred_leaf_mean[i]>50:
            co2_ratio = 0.5
        else:
            co2_ratio = 1.5
    disease_signal=co2_ratio*zero_ec_cnt

    te_df.loc[i,['co2_ratio','zero_ec_cnt','disease_signal',
                 'aftn_ec','night_ec1','night_ec2','m_temp','m_humidity']]=\
        co2_ratio, zero_ec_cnt, disease_signal, aftn_ec, night_ec1, night_ec2, m_temp, m_humidity
0it [00:00, ?it/s]

청경채 무게 추정

In [10]:
df=tr_df[['img_dirs','leaf_weight']].dropna().reset_index()
train,valid=train_test_split(df, test_size=0.33, random_state=42)
In [11]:
df[['img_dirs','leaf_weight']].isna().sum()
Out[11]:
img_dirs       0
leaf_weight    0
dtype: int64

CNN만으로 예측

In [12]:
def tr_gen():
    df=train[['img_dirs','leaf_weight']].dropna().reset_index()
    for i in range(df.shape[0]):
        img=cv2.imread(df.img_dirs[i])
        img=cv2.resize(img,dsize=(int(img.shape[0]/4),int(img.shape[1]/4)),interpolation=cv2.INTER_CUBIC)
        contrast_img=img_Contrast(img, 3, tileGridSize=(4,3))
        extract_img1=img_extract(img,contrast_img, lower=(10,0,0), upper=(30,255,255))
        extract_img2=img_extract(img,contrast_img,upper=(90,255,130))# 원본에서 추출
        extract_img=cv2.addWeighted(extract_img1,1,extract_img2,1,1)
        yield (extract_img, df.leaf_weight[i])
def va_gen():
    df=valid[['img_dirs','leaf_weight']].dropna().reset_index()
    for i in range(df.shape[0]):
        img=cv2.imread(df.img_dirs[i])
        img=cv2.resize(img,dsize=(int(img.shape[0]/4),int(img.shape[1]/4)),interpolation=cv2.INTER_CUBIC)
        contrast_img=img_Contrast(img, 3, tileGridSize=(4,3))
        extract_img1=img_extract(img,contrast_img, lower=(10,0,0), upper=(30,255,255))
        extract_img2=img_extract(img,contrast_img,upper=(90,255,130))# 원본에서 추출
        extract_img=cv2.addWeighted(extract_img1,1,extract_img2,1,1)
        yield (extract_img, df.leaf_weight[i])
def check_gen():
    df=tr_df[['img_dirs','leaf_weight']].dropna().reset_index()
    for i in range(df.shape[0]):
        img=cv2.imread(df.img_dirs[i])
        img=cv2.resize(img,dsize=(int(img.shape[0]/4),int(img.shape[1]/4)),interpolation=cv2.INTER_CUBIC)
        contrast_img=img_Contrast(img, 3, tileGridSize=(4,3))
        extract_img1=img_extract(img,contrast_img, lower=(10,0,0), upper=(30,255,255))
        extract_img2=img_extract(img,contrast_img,upper=(90,255,130))# 원본에서 추출
        extract_img=cv2.addWeighted(extract_img1,1,extract_img2,1,1)
        yield (extract_img, df.leaf_weight[i])

def te_gen():
    df=te_df[['img_dirs']].reset_index()
    for i in range(df.shape[0]):
        img=cv2.imread(df.img_dirs[i])
        img=cv2.resize(img,dsize=(int(img.shape[0]/4),int(img.shape[1]/4)),interpolation=cv2.INTER_CUBIC)
        contrast_img=img_Contrast(img, 3, tileGridSize=(4,3))
        extract_img1=img_extract(img,contrast_img, lower=(10,0,0), upper=(30,255,255))
        extract_img2=img_extract(img,contrast_img,upper=(90,255,130))# 원본에서 추출
        extract_img=cv2.addWeighted(extract_img1,1,extract_img2,1,1)
        yield (extract_img, np.nan)
def NMAE(true, pred):
    mae = np.mean(np.abs(true-pred))
    score = mae / np.mean(np.abs(true))
    return score

def nmae_keras(y_true, y_pred):
    score = tf.py_function(func=NMAE, inp=[y_true, y_pred], Tout=tf.float32,  name='name')
    return score
In [13]:
tr_data=tf.data.Dataset.from_generator(tr_gen,(tf.float32,tf.float32))
tr_data=tr_data.cache().batch(24).prefetch(buffer_size=10)
va_data=tf.data.Dataset.from_generator(va_gen,(tf.float32,tf.float32))
va_data=va_data.cache().batch(24).prefetch(buffer_size=10)
te_data=tf.data.Dataset.from_generator(te_gen,(tf.float32,tf.float32))
te_data=te_data.cache().batch(24).prefetch(buffer_size=10)
ch_data=tf.data.Dataset.from_generator(check_gen,(tf.float32,tf.float32))
ch_data=ch_data.cache().batch(24).prefetch(buffer_size=10)
In [14]:
next(iter(tr_data))[1]
Out[14]:
<tf.Tensor: shape=(24,), dtype=float32, numpy=
array([6.32770e+01, 6.21000e-01, 1.57960e+01, 6.40700e+00, 3.56220e+01,
       1.78650e+01, 2.03625e+02, 1.12030e+01, 2.34540e+01, 2.91000e-01,
       1.36669e+02, 5.90100e+01, 3.69356e+02, 1.98366e+02, 1.60211e+02,
       1.30000e-01, 5.25400e+00, 1.27300e+00, 2.86059e+02, 1.12600e+01,
       5.22000e-01, 2.86100e+00, 2.20446e+02, 8.98200e+00], dtype=float32)>
In [15]:
if not('forecast_weight_best_model_v1.h5' in os.listdir("/root/jupyter/데이콘/청경채/output/")):
    tf.random.set_seed(42)
    inp = tf.keras.Input(shape=(820, 616, 3),dtype=tf.float32)
    conv_1=tf.keras.layers.Conv2D(16,kernel_size=1, activation='LeakyReLU')(inp)
    avg_1=tf.keras.layers.AveragePooling2D()(conv_1)
    conv_2=tf.keras.layers.Conv2D(64,kernel_size=1, activation='LeakyReLU')(avg_1)
    avg_2=tf.keras.layers.AveragePooling2D()(conv_2)
    conv_3=tf.keras.layers.Conv2D(32,kernel_size=1, activation='LeakyReLU')(avg_2)
    avg_3=tf.keras.layers.AveragePooling2D()(conv_3)
    conv_4=tf.keras.layers.Conv2D(8,kernel_size=1, activation='LeakyReLU')(avg_3)
    avg_4=tf.keras.layers.AveragePooling2D()(conv_4)
    flat=tf.keras.layers.Flatten()(avg_4)
    dense_1=tf.keras.layers.Dense(64,activation='ReLU')(flat)
    dense_2=tf.keras.layers.Dense(32,activation='LeakyReLU')(dense_1)
    out=tf.keras.layers.Dense(1,activation='LeakyReLU')(dense_2)
    model = tf.keras.Model(inp, out)
    early = tf.keras.callbacks.EarlyStopping(
        monitor='val_loss',mode="min", patience=10)
    lr_reduce=tf.keras.callbacks.ReduceLROnPlateau(
        monitor='val_loss',patience=3,verbose=1,min_delta=0.001)
    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01),
                  loss='mse',metrics=['mae'])
    model.fit(tr_data,verbose=1,callbacks =[early,lr_reduce],
              epochs=50,validation_data=va_data)

    # fine tuning
    for i in model.layers[0:-4]:
        i.trainable=False
    cp_callback = tf.keras.callbacks.ModelCheckpoint(
        filepath='/root/jupyter/데이콘/청경채/model/now_weight_{val_loss:.2f}.h5',
        monitor='val_loss',mode='min',verbose=1)
    early = tf.keras.callbacks.EarlyStopping(monitor='val_loss',mode="min", patience=50)
    lr_reduce=tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss',patience=10,verbose=1)
    tf.random.set_seed(42)
    model.fit(tr_data,verbose=1,callbacks =[early,lr_reduce,cp_callback],
              epochs=300,validation_data=va_data)

    file_loss=min([i.split('/')[-1].split('_')[-1].replace('.h5','')
                   for i in os.listdir('/root/jupyter/데이콘/청경채/model/')])
    model=tf.keras.models.load_model(f'/root/jupyter/데이콘/청경채/model/now_weight_{file_loss}.h5')
    tf.keras.models.save_model(model,f'/root/jupyter/데이콘/청경채/output/forecast_weight_best_model_v1.h5')
else:
    model=tf.keras.models.load_model(f'/root/jupyter/데이콘/청경채/output/forecast_weight_best_model_v1.h5')
In [16]:
tr_df['cnn_now_weight']=model.predict(ch_data)
te_df['cnn_now_weight']=model.predict(te_data)
In [17]:
plt.scatter(tr_df.cnn_now_weight,tr_df.leaf_weight)
Out[17]:
<matplotlib.collections.PathCollection at 0x7f26cc768cf8>
In [18]:
submit=pd.read_csv(f"{main_dir}/sample_submission.csv")
submit['leaf_weight']=te_df['cnn_now_weight']
submit.to_csv(f"/root/jupyter/데이콘/청경채/output/submit_5.csv",index=False)